Multilayer Selection-Fusion Model for Pattern Classification
نویسنده
چکیده
Individual classification models are recently challenged by the combined pattern recognition systems, which often show better performance. In such systems the optimal set of classifiers is first selected and then combined by a specific combination method. Large and rough search space formed from performances of various combinations of classifiers makes the selection process very difficult and often leads to selection overfitting, negatively affecting generalisation ability of the system. In this work a novel design of multiple classifier system is proposed, which recurrently uses multiple selection and fusion processes applied at many layers to a population of best combinations of classifiers rather than the individual best. On the particular implementation with evolutionary searching algorithms and majority voting, the improvement of the system’s generalisation performance is demonstrated experimentally and explained theoretically.
منابع مشابه
Fusion of Different Corneal Parameters to Improve the Diagnosis of Keratoconus
Purpose: To diagnose keratoconus from healthy eyes, as well as suspected keratoconus. Methods: Certain parameters were extracted from Casia, Corvis, and Pentacam HR devices for 3 groups of healthy, with keratoconus, and suspected keratoconus. This study was performed on 340 eyes with keratoconus, 310 normal eyes, and 350 suspected keratoconus. The processing method involved the fusion of featur...
متن کاملNonstationary Feature Extraction Techniques for Automatic Classification of Impact Acoustic Signals
Condition monitoring of wooden railway sleepers applications are generally carried out by visual inspection and if necessary some impact acoustic examination is carried out intuitively by skilled personnel. In this work, a pattern recognition solution has been proposed to automate the process for the achievement of robust results. The study presents a comparison of several pattern recognition t...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کامل